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Abstract. We study an example of a perturbed Floquet HamiltonianK + βV depending on a
coupling constantβ. The spectrumσ(K) is pure point and dense. We pick up an eigenvalue,
namely 0∈ σ(K), and show the existence of a functionλ(β) defined onI ⊂ R such that
λ(β) ∈ σ(K + βV ) for all β ∈ I , 0 is a point of density for the setI , and the Rayleigh–
Schr̈odinger perturbation series represents an asymptotic series for the functionλ(β). All ideas
are developed and demonstrated when treating the explicit example, but some of them are
expected to have an essentially wider range of application.

1. Introduction

A common problem occurring frequently in theoretical physics is the eigenvalue problem
for a perturbed operatorK + βV , whereβ is a coupling constant, under the assumption
that F0 is a known eigenvalue of the unperturbed operatorK. The Rayleigh–Schrödinger
(RS) series gives a formal solutionF(β), with F(0) = F0, as an unambiguously determined
formal power series. The regular perturbation theory due to Rellich (1937) and Kato (1966)
justifies this formal series as an analytic function well defined on a neighbourhood ofβ = 0
provided one essential condition is fulfilled, namely the eigenvalueF0 ∈ σ(K) must be
isolated. On the other hand, the situation when an eigenvalue ofK is not isolated is far
from being exceptional and recently attracted considerable attention (see Simon 1993 and
references therein).

The so-called Floquet Hamiltonians represent a class of operators having even a dense
pure point spectrum in many interesting examples. They were introduced as an important
tool for the study of time-dependent systems (see, e.g., Sambe 1973, Howland 1979, Yajima
1977). A distinguished subclass is formed by the systems where the potentialV (t) is T -
periodic and bounded. The period is usually considered as a parameter. After rescaling
the time, the potentialV (t) becomes 2π -periodic and the frequencyω = 2π/T appears in

‖ E-mail address: duclos@cpt.univ-mrs.fr
¶ E-mail address: stovicek@kmdec.fjfi.cvut.cz
+ E-mail address: vittot@cpt.univ-mrs.fr
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front of the time derivative. Thus one is lead to study the operatorK + βV (t) acting in
K := L2(T, dt)⊗H, with T = R/2πZ, and

K := −iω∂t +H ω > 0

whereH is the ‘true’ Hamiltonian acting as a self-adjoint operator in a separable Hilbert
spaceH. We use the loose notation identifying∂t with ∂t ⊗1,H with 1⊗H , etc. Provided
the spectrumσ(H) is pure point the same is true forσ(K) = ωZ + σ(H). It is known
that σ(K) is dense inR for almost allω > 0 as soon as supσ(H) = +∞. Recently the
spectrum ofK + βV (t) has been studied by the aid of a quantum version of the KAM
method due to Bellissard (1985) (see also Combescure 1987, Bellissard and Vittot 1990,
Bleher, Jauslin and Lebowitz 1992, Duclos andŠ̌tov́ıček 1996a) as well as by adiabatic
tools (Howland 1989, 1992, Nenciu 1993, Joye 1994).

In the present paper we focus on a particular example withH = L2(T, dx), namely

H = −∂ 2
x (+ periodic boundary conditions) V (t) = 4 cost cosx. (1)

Clearly,σ(H) = {E(k) = k2; k ∈ Z} and soσ(K) = {F(n) = ωn1 + E(n2); n ∈ Z× Z}.
The spectrum ofH is degenerate and that makes the problem more complicated; the only
non-degenerate eigenvalue isE(0) = 0. This is why we restrict ourselves to eigenvalues
F(n) of K with n2 = 0. In order to be specific, we shall even consider the only eigenvalue
F(0) = 0. We are going to address the question whether there exists an eigenvalueλ(β) of
the operatorK+βV (t) which could be considered as a perturbation ofF(0) = 0 depending
on the parameterβ. A possible answer is given in (|X| stands for the Lebesgue measure of
a measurable setX)

Proposition 1. For almost allω > 0, there exists a real-valued functionλ(β) defined on a
setI ⊂ R with the properties:

(i) for all β ∈ I , λ(β) is an eigenvalue ofK + βV (t),
(ii) lim δ↓0 |I ∩ [−δ, δ ]|/2δ = 1,
(iii) the function λ(β) has an asymptotic expansion atβ = 0 coinciding with the formal

Rayleigh–Schr̈odinger perturbation series for the eigenvalueF(0) = 0 of K.

In fact, our final goal (not achieved in this paper) is to prove a similar proposition for
a much wider class of Floquet Hamiltonians. More precisely we expect that statements (i)
and (ii) of proposition 1 remain valid in the following more general situation: (a) the
Hilbert spaceH is separable but otherwise unspecified, (b) the spectrum ofH consists only
of eigenvaluesσ(H) = {E(k); k ∈ Z+} with uniformly finite multiplicity and fulfill the
gap condition:

∃α > 0 inf
k∈Z+

E(k + 1)− E(k)
(k + 1)α

=: CE > 0 (2)

(note thatα = 1 in our example), (c)V is [ 2
α

] + 1 strongly time differentiable as a map
from T into the bounded operators inH (note that here as well as in what follows [x]
denotes the integer part ofx), and (d) the unperturbed eigenvalue is any of the eigenvalues
of K = −iω∂t +H . In addition we think that the Rayleigh–Schrödinger perturbation series
still exist up to an order depending on the regularity ofV .

These more general conditions cover a large class of quantum driven systems as, e.g.,
the pulsed rotor (our example), Bellissard 1985, the quantum Fermi accelerator (Fermi 1949,
Ulam 1961, Duclos anďŠtov́ıček 1996b) as well as other quantum systems like a Bloch
electron driven by a constant electric force in singular periodic potentials (Ao 1989, Avron
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et al 1994). The relevance of such models to study the mechanism behind the phenomena
of dynamical stability and localisation is well known.

Condition (2) on the growth of the gaps in the spectrum ofH was put forward in
Howland 1989 and is used explicitely or implicitely in most of the known results quoted
above. However, Combescure (1987) considered the caseα = 0 with an extra assumption,
leading to non-realistic potential. One would even like to treat negativeα, as in the famous
‘quantum ball’ model (see Benvenutoet al 1991). We think that the study of such more
difficult cases will require ‘compensation techniques’ of the type which is used in lemma 10
below. This is also one of the purposes of this paper, namely to get some training in using
such a new tool. Note that we learned such techniques in Eliasson 1988.

As this programme seems to be extremely complex, we prefer to develop and
demonstrate the main ideas when treating the explicit example of the pulsed rotor. Even
in this example the proof is far from obvious and straightforward. Apparently, our model
captures most of the basic features but, on the other hand, it makes some simplifications
possible and can be treated at a relatively elementary level. In particular, our model is very
regular in the following sense: writing{V (n;m)} for the matrix elements of the potential
V in the eigenbasis ofK we have that:∃C > 0, ∀ r > 0, |V (n,m)| 6 C|n − m|−r (one
has even exponential bounds), a property which is not true, e.g., for the quantum Fermi
accelerators or the Bloch electron quoted above. On the other hand, the pulsed rotor is not
the simplest choice of example since the spectrum ofH is two-fold degenerate as already
mentioned above. For example, we could have takenH = −1 on a compact interval with
Dirichlet boundary conditions orH = −1 on T with twisted boundary conditions. We
prefer to stick to this example, since we believe that it is more attractive due to its historical
value (see Bellissard 1985).

The rest of the paper is devoted to the proof of proposition 1. However, we shall try,
whenever possible, to consider a more general situation and to propose some ideas that are
also applicable to other models. It might have been possible to follow all the constants in
the proof of proposition 1 and give an explicit bound on the size ofI , as well as an explicit
lower bound on the measure of|I ∩ [−δ, δ]| with the risk of making the derivation less
transparent. We hope to come back to such a challenge when treating the general situation.

2. Basic equation

The starting point is the eigenvalue equation forK+βV . Assume that 0 is a non-degenerate
eigenvalue ofK andf is the normalized eigenvector. LetP be the orthogonal projector
onto the eigenspaceCf andQ := 1− P . We are seekingλ = λ(β) ∈ R andg ∈ K such
thatPg = 0 and

(K + βV )(f + g) = λ(f + g). (3)

Without loss of generality we can assume that

PVP = 0. (4)

Apply the projectorsP andQ successively to equation (3). The result is

λ = β 〈Vf, g〉 (5)

(K̂ + βV̂ − λ)g = −βQVf. (6)

Here and everywhere in what follows the hat indicates the restriction to RanQ in the sense:
X̂ = QXQ| RanQ.
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According to our assumptions,̂K is invertible and we set00 := K̂−1 (defined on
RanQ). For λ 6∈ σ(K̂) we also define

0λ := (K̂ − λ)−1 = (1− λ00)
−100.

Keepingλ as an auxiliary parameter one can solve (6) formally as

g = g(β, λ) := −β(1+ β0λV̂ )−10λQVf. (7)

Inserting (7) in (5) we obtain a fixed-point equation for the eigenvalueλ = λ(β):
λ = G(β, λ) where G(β, λ) := −β2〈QVf, (1+ β0λV̂ )−10λQVf 〉. (8)

The trick with the projectors and keepingλ as an auxiliary parameter is well known and
is related to various names. Note that in the regular case, whend := dist(0, σ (K̂)) > 0,
one can re-derive the Rellich–Kato theorem in this way. Indeed, we have‖00‖ = d−1

and (1+ β0λV̂ ) is invertible (on RanQ) provided |β| and |λ| are sufficiently small. The
implicit function theorem applied to (8) then gives the result.

To solve (8) formally one can use Bürmann–Lagrange formula which can be proved
with some combinatorics, and not necessarily with the Cauchy residuum theorem. Write

G(β, λ) =
∞∑
M=0

8M(β) λ
M

where

8M(β) = −
∞∑
k=1

∑
µ∈Nk , |µ|=k+M

(−β)k+1 〈QVf, K̂−µ1V̂ K̂−µ2 · · · V̂ K̂−µkQVf 〉.

The formal solutionλ(β) reads

λ(β) =
∞∑
N=1

∑
ν∈T (N)

8ν1(β) · · ·8νN (β) =
∞∑
M=2

ξM β
M (9)

where T (N) ⊂ ZN+ is the set of rootedN -trees: ν = (ν1, . . . , νN) ∈ T (N) iff
νk + · · · + νN 6 N − k, 2 6 k 6 N , and |ν| = N − 1. Consequently, one obtains an
expression for the coefficientsξM :

ξM =
[M/2]∑
N=1

∑
ν∈T (N)

∑
k(1),...,k(N)∈N

∑
µ(1)∈Nk(1),...,µ(N)∈Nk(N)

× (−1)M+N
N∏
j=1

〈QVf, K̂−µ(j)1V̂ K̂−µ(j)2 · · · V̂ K̂−µ(j)k(j)QVf 〉 (10)

with the summation range being restricted by the conditions

k(1)+ · · · + k(N)+N = M |µ(j)| = k(j)+ νj 16 j 6 N.
Of course, this result must coincide with the standard RS perturbation series written in

the form (see Kato 1966):

ξM = (−1)M

M

∑
k1+···+kM=M−1, ki>0

tr
(
V R̂k1 · · ·V R̂kM

)
(11)

where the symbol̂Rk is defined by:R̂0 = −P , and fork > 1, R̂k|RanP = 0, R̂k|RanQ =
K̂−k. The equality between (10) and (11) can be verified quite straightforwardly using (4)
and the following fact.
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Lemma 2. For a givenN ∈ N and eachσ = (σ1, . . . , σN) ∈ ZN+ obeying |σ | = N − 1
there exists exactly one cyclic permutation ofσ , σ ′ = (σN−m+1, . . . , σN, σ1, . . . , σN−m)
(determined bym ∈ {0, 1, . . . , N − 1}), such thatσ ′ ∈ T (N).
Hence each term of (10) is a grouping of many terms of (11) where we take into account
the cyclic property of the trace.

However, in the case whenσ(K) is dense inR and so dist(0, σ (K̂)) = 0 it seems to
be hopeless to consider the RS series as a convergent series. The complication comes from
arbitrarily large powers ofK̂−1 in (10) (or (11)) since among eigenvalues ofK̂ there are
arbitrarily small numbers, the so-called small denominators. Probably the maximum one
can attempt in this situation is to verify the finiteness of the coefficientsξM (generally up
to some order depending on the smoothness ofV (t)) and to show that the RS series is
asymptotic for the functionλ(β).

Let us specify the formula (10) in our example (1). ConsiderV (t) as an operator inK
and denote byV (m, n), m, n ∈ Z2, its matrix elements in the eigenbasis ofK. We have

V (m, n) =
{

1 if m− n ∈ {±(1, 1), ±(1,−1)}
0 otherwise.

(12)

Concerning the eigenvalues ofK, there is a degeneracy

F(n1, n2) = F(n1,−n2) = ωn1+ n2
2 .

Let L = Z(1, 1)+ Z(1,−1) be a sublattice inZ2 and denote byP0(N) ⊂ (Z2)N+1 the set
of closed paths inL of lengthN with the base point̄0: (ῑ(0), ῑ(1), . . . , ῑ(N)) ∈ P0(N) iff
ῑ(0) = ῑ(N) = 0̄, ῑ(j ) 6= 0̄ for 16 j 6 N − 1, ῑ(j ) − ῑ(j − 1) ∈ {±(1, 1), ±(1,−1)} for
16 j 6 N . Note thatP0(N) = ∅ for N odd. Clearly

〈QVf, K̂−µ1V̂ K̂−µ2 · · · V̂ K̂−µkQVf 〉 =
∑

ῑ∈P0(k+1)

k∏
j=1

F(ῑ(j))−µj . (13)

The only thing we can claim at this moment is that allξM , 2 6 M, are finite for the sum
on the right-hand side of (10) is finite.

3. Diophantine estimates

In order to cope with small denominators we need diophantine estimates. Suppose that we
are given two sequencesψ andE such that

ψ : N→ ]0, 1
2 ]

∑
k∈N

ψ(k) <∞

and

E : N→ ]0,+∞[ inf
k∈N

E(k) =: dE > 0.

SetF(n) := ωn1+ E(n2), n ∈ Z× N, and relate the set

�(γ ) := {ω > 0; ∀ n ∈ Z× N, |F(n)| > ωγψ(n2)}
to a constantγ > 0. It is a rather standard procedure to show

Lemma 3. If γ 6 dE/a 6 1 then

| ]0, a ] \�(γ )| 6
(

12a
∑
k∈N

ψ(k)

)
γ.
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Proof. Write

]0, a ] \�(γ ) =
⋃

n∈Z×N
�bad(n)

where

�bad(n) := {ω ∈ ]0, a]; |F(n)| < ωγ ψ(n2)}.
Considern ∈ Z× N such that�bad(n) 6= ∅. Clearly

ω ∈ �bad(n)⇒ E(n2)− ωγψ(n2) < |ωn1| < E(n2)+ ωγψ(n2).

We shall need two consequences of these inequalities. First, since

ωγψ(n2) 6 dE/26 E(n2)/2

we obtain

0< E(n2)/2a < |n1|.
Second, as we now know that|n1| > 1> γψ(n2), we have

E(n2)

|n1| + γψ(n2)
< ω <

E(n2)

|n1| − γψ(n2)
.

Consequently

|�bad(n)| 6 2γψ(n2)E(n2)

n2
1− γ 2ψ(n2)2

<
3γψ(n2)E(n2)

n2
1

.

Furthermore,n1 < 0 since otherwisen1 > 1 and

F(n) = ωn1+ E(n2) > ω > ωγψ(n2)

for all ω ∈ �bad(n) 6= ∅, a contradiction. We conclude that

| ]0, a ] \�(γ )| 6
∑
n2∈N

3γ ψ(n2) E(n2)
∑
n1∈N

n1>E(n2)/2a

1

n2
1

.

To complete the proof observe that, forx > 0,∑
k∈N, k>x

1

k2
6 2

x
. �

We can now introduce the set� (depending onψ) of ‘non-resonant’ frequencies:

� := {ω > 0; inf
n∈Z×N

|F(n)|/ψ(n2) > 0} =
⋃
γ>0

�(γ ).

As an immediate consequence of lemma 3 we have

Lemma 4.The complement ]0,+∞[ \� is of zero measure in the Lebesgue sense.

In the case of our model,E(k) = k2. Extend the definition ofψ by ψ(0) = 1 and we
define alsoF((k, 0)) := ωk. We fix ω ∈ � once for all (and we do not emphasize this fact
in the rest of the paper). Then there existsγ, 0< γ 6 1, such that

|F(n)| > ωγ ψ(n2) for all n ∈ Z× Z+ n 6= 0̄.

Rather than treating the formal RS series (9), we wish to tackle the fixed-point
equation (8). This means coping with expressions involving the operator0λ and hence
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the numbers(F (n) − λ)−1, i.e. the eigenvalues of0λ. The estimate onF(n) − λ will be
governed by a constantρ and a sequencẽψ of positive reals and we require

ρ ∈ [ 0, 1 ] and ψ̃(k) 6 ψ(k)/2 ∀ k ∈ Z+.
For a given sequenceE as above we define a set3 of ‘good’ parametersλ:

3 := {λ ∈ R; ∀ n ∈ Z× N, |F(n)− λ| > ωγ (2|λ|/ω)ρψ̃(n2)}. (14)

Note that|F(n) − λ| > ω/2 if n1 6= 0, n2 = 0 and |λ| 6 ω/2. It is important for us to
control the measure of3.

Lemma 5. If 0 < δ 6 1
4 then

| [−δω, δω ] \3| < 2ωγ (2δ)ρ
∑

k∈N, ψ(k)<2δ/γ

ψ̃(k).

Proof. Fix δ, 0< δ 6 1
4, and write

[−δω, δω] \3 =
⋃
k∈N

3bad(k)

where

3bad(k) :=
{
λ ∈ [−δω, δω]; min

j∈Z
|ωj + E(k)− λ| < ωγ (2|λ|/ω)ρψ̃(k)

}
.

Observe that for a givenk ∈ N there is at most onej ∈ Z such that there exists
λ ∈ [−δω, δω] for which |ωj + E(k)− λ| < ωγ (2|λ|/ω)ρψ̃(k). Indeed, if another couple
j ′, λ′ were to exist then

ω|j − j ′| < 2ωγ (2|λ|/ω)ρψ̃(k)+ |λ| + |λ′| 6 ω

2
+ ω

4
+ ω

4
= ω

and hencej = j ′. It follows that

|3bad(k)| 6 2ωγ (2δ)ρψ̃(k).

Furthermore, ifλ ∈ 3bad(k) 6= ∅ then, sinceω ∈ �,

ωγψ(k)− |λ| 6 |ωj + E(k)− λ| < 1
2 ωγ ψ(k)

H⇒ 1
2 ωγ ψ(k) < |λ| 6 δω

H⇒ ψ(k) < 2δ/γ.

The assertion is then a direct consequence. �

The standard choice forψ and ψ̃ is

ψ(k) = k−σ /2 ψ̃(k) = k−τ /4 with 1< σ 6 τ. (15)

In this case we obtain another intermediate result as a direct consequence of lemma 5.

Lemma 6. If τ > 1+ σ(1− ρ) then 0 is a point of density for the set3, i.e.

lim
δ↓0

1

2δω
|[−δω, δω ] ∩3| = 1.
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Proof. It is sufficient to estimate∑
k∈N, k>(γ /4δ)1/σ

k−τ 6
(

4δ

γ

)τ/σ
+
∫ ∞
(γ /4δ)1/σ

y−τ dy.

According to lemma 5 we obtain

|[−δω, δω] \3| 6 ωγ

2
(2δ)ρ

((
4δ

γ

)τ/σ
+ 1

τ − 1

(
4δ

γ

)(τ−1)/σ
)

and so, assumingτ > 1+ σ(1− ρ),

lim
δ↓0

1

2δω
|[−δω, δω ] \3| = 0. �

Suppose that the sequenceE obeys the gap condition (2) withα > 0. A possible choice
of the constantsσ, τ andρ which suits the assumption of lemma 6 is

τ = 1+ α 1< σ < 1+ α and ρ = 1/σ.

In our model we have effectivelyα = 1 and so we choose

τ = 2 1< σ < 2 and ρ = 1/σ ∈ ]1/2, 1[. (16)

Let us now derive some consequences of the above diophantine estimates in combination
with the gap condition (2). Suppose once again that the spectrum ofH is pure point and
equals{E(k)}k∈Z+ , E(0) = 0, and thatE obeys the gap condition (2). It is quite useful to
observe that another inequality follows straightforwardly from (2):

|E(j)− E(k)| > CE

α + 1
|j − k|max{jα, kα} ∀ j, k ∈ Z+. (17)

We shall denote byPn, n ∈ Z × Z+ (or Z × Z in our model), the eigenprojectors ofK
corresponding to the eigenvaluesF(n); we haveP ≡ P0̄ with F(0̄) = 0. We set also
Qn := 1− Pn.

Another important observation coming from the gap condition is that those eigenstates
Pn which can potentially contribute by small denominators are distributed rather rarely in
the half-planen2 > 0. Let S designate the set of ‘critical’ indices defined by

n ∈ S iff F(n) ∈ ] − ω/2, ω/2 ] \ {0}. (18)

Clearly, for eachn2 ∈ N there exists exactly onen1 ∈ Z (necessarilyn1 6 0) such that
n ∈ S; (n1, 0) 6∈ S for all n1 6= 0, and we treatn = 0̄ separately, since it corresponds to
the eigenstateP to be perturbed. Furthermore, ifm, n ∈ S andm2 6 n2 then |m1| 6 |n1|.
Roughly speaking, the indices from the setS are situated close to the curven1 = −E(n2)/ω.
We setPS :=∑n∈S Pn, QS := Q− PS . Evidently,‖00QS‖ 6 2/ω.

Let us introduce a functionL defined onS:

L(n) := min{|n2|, d(n)} (19)

where

d(n) := dist(n1, pr1(S \ {n})) = min
n′∈S, |n′2−n2|=1

|n′1− n1| 6 dist(n1, pr1(S) \ {n1})

and pr1 is the projection onto the first coordinate axis.
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Lemma 7.Assume that the functioñψ occurring in the definition (14) of the set3 satisfies

sup
k∈N

k−min{1,α} | log ψ̃(k)| <∞.

Then there exists a constantC1 > 1 such that

|F(n)− λ| > (2|λ|/ω)ρ C −L(n)1 ∀ n ∈ S ∀ λ ∈ 3.

Proof. It is sufficient to findC1 so that

ωγ ψ̃(n2) > max{C −n2
1 , C

−d(n)
1 }

holds for alln ∈ S. Observe that for any couplem, n ∈ S, m 6= n, we havem2 6= n2 and

ω|n1−m1| > |E(n2)− E(m2)| − |F(n)− λ| − |F(m)− λ|
and consequently, by virtue of (17) and the definition (18) ofS

d(n) > (CE/(α + 1)) |n2|α − ω. (20)

The rest of the proof is self-evident. �
We are going to verify one more estimate related to the functionL(n) defined in (19).

To this end we shall need the following lemma.

Lemma 8.Let 10,11, . . . , 1` be a family of positive numbers. Then it holds that∣∣∣∣ 1

11+12+ · · · +1`

− 1

`10

∣∣∣∣ 6 max
16k6`

∣∣∣∣ 1

1k

− 1

1k−1

∣∣∣∣ .
Proof. The proof follows immediately from the identity

1

11+12+ · · · +1`

− 1

`10

= 1

`

[(
1

11
− 1

10

)
(11+ · · · +1`)+

(
1

12
− 1

11

)
(12+ · · · +1`)

+ · · · +
(

1

1`

− 1

1`−1

)
1`

]
1

11+ · · · +1`

. �

Let us define

1E(k) := E(k + 1)− E(k), k ∈ Z+
and suppose thatE still satisfies the gap condition (2),E(0) = 0. Concerning the function
ψ̃ we assume that it is decreasing and

sup
k∈N

ψ̃(k)/ψ̃(2k) =: Cψ <∞. (21)

The following lemma contains a condition relating the sequences1E and ψ̃ .

Lemma 9.Assume that

sup
k∈Z+

1

ψ̃(k)

∣∣∣∣ 1

1E(k + 1)
− 1

1E(k)

∣∣∣∣ =: C1 <∞. (22)

Then there exists a constantC2 > 0 such that for eachn ∈ S verifying

min{1E(n2), 1E(n2− 1)} > 4ω (23)



7176 P Duclos et al

and for allm ∈ Z× N, m 6= n, from the neighbourhood

2 max{|n1−m1|, |n2−m2|} 6 L(n) (24)

and for allλ ∈ 3 ∩ [−ω/3, ω/3 ], it holds true that∣∣∣∣ 1

F(m)− λ +
1

F(m′)− λ
∣∣∣∣ 6 C2 (2|λ|/ω)−ρ |F(n)− λ|

wherem′ = 2n−m.

Proof. The assumptions have some obvious consequences. First, (23) implies that ifm ∈ S
andm2 = n2± 1 then|m1− n1| > 3. Furthermore, the condition

2|n1−m1| 6 dist(n1, pr1(S \ {n})) and m 6= n
implies thatm 6∈ S. Thus one finds that

|F(m)− λ| > ( 1
2 − 1

3

)
ω = 1

6 ω.

Obviously, equation (24) also implies thatn2/26 m2 6 3n2/2. Second, we have

|F(m)− λ| > |E(m2)− E(n2)|/6. (25)

Indeed, ifm2 6= n2 then

|F(m)− λ| > |E(m2)− E(n2)|
(

1− ω|m1− n1| + |F(n)| + |λ|
|E(m2)− E(n2)|

)
.

Let n′ ∈ S be such that|n′2 − n2| = 1 and sgn(n′2 − n2) = sgn(m2 − n2). Then
dist(n1, pr1(S \ {n})) 6 |n1− n′1| and, owing to (24),

2ω|n1−m1| 6 ω|n1− n′1| = |E(n′2)− E(n2)+ F(n)− F(n′)|

6 |E(m2)− E(n2)| +
(ω

2
+ ω

2

)
.

Note that (m2 6= n2)

|E(m2)− E(n2)| > min{1E(n2),1E(n2− 1)} > 4ω.

Altogether this means that

ω|m1− n1| + |F(n)| + |λ|
|E(m2)− E(n2)| 6 1

2
+
(ω

2
+ ω

2
+ ω

3

) 1

4ω
= 5

6

and (25) follows. All the above estimates are also valid form′. Now write

1

F(m)− λ +
1

F(m′)− λ =
2(F (n)− λ)+ E(m2)+ E(m′2)− 2E(n2)

(F (m)− λ)(F (m′)− λ) .

Now to finish the proof, it suffices to study the casem2 − n2 = n2 − m′2 6= 0. From (25)
one finds that

6−2

∣∣∣∣E(m2)+ E(m′2)− 2E(n2)

(F (m)− λ)(F (m′)− λ)
∣∣∣∣ 6 ∣∣∣∣ 1

E(m2)− E(n2)
+ 1

E(m′2)− E(n2)

∣∣∣∣
6
∣∣∣∣ 1

E(m2)− E(n2)
− 1

(m2− n2)1E(n2)

∣∣∣∣
+
∣∣∣∣ 1

E(m′2)− E(n2)
− 1

(m′2− n2)1E(n2)

∣∣∣∣ . (26)
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Combining lemma 8, the monotonic behaviour ofψ̃ , and assumption (22) we obtain∣∣∣∣ 1

E(j + `)− E(j) −
1

`1E(j)

∣∣∣∣ 6 C1 ψ̃(j)∣∣∣∣ 1

E(j)− E(j − `) −
1

`1E(j)

∣∣∣∣ 6 C1 ψ̃(j − `).
Thus we can estimate the right-hand side of (26) from the above by (cf equation (21))

2C1 ψ̃(min{m2, m
′
2}) 6 2C1Cψ ψ̃(2 min{m2, m

′
2}) 6 2C1Cψ ψ̃(n2)

6 (2C1Cψ/ωγ ) (2|λ|/ω)−ρ |F(n)− λ|.
This completes the proof. �

Finally note that, with the choice of̃ψ (15) and forE(k) = k2, the assumptions of
both lemmas 7 and 8 are satisfied. Thus these two lemmas are applicable to our example
provided the choices (15) and (16) have been made.

4. Solution of the fixed-point equation

We wish to justify the power series

g(β, λ) =
∞∑
k=0

(−β)k+1 (0λV̂ )
k 0λQVf (27)

as a solution to the vector equation (6). We start from an estimate whose proof relies heavily
on the very special features of our model. This does not concern the spectrum ofH (the gap
condition (2) would be sufficient) but what is really special is the form of the potential (12).
For eachm ∈ Z2 there exist exactly four indicesn ∈ Z2 such thatVmn 6= 0. This fact
makes it possible to use some elementary combinatorics in order to treat the summands
in (27). The heart of the proof is a sort of compensation based on lemma 9. This method
of compensations was inspired by the pioneering work of Eliasson (1988).

Recall the definition of the latticeL (section 2) and denote byP(N) ⊂ (Z2)N+1 the set of
(unclosed) paths inL of lengthN with the initial vertex0̄: (ῑ(0), ῑ(1), . . . , ῑ(N)) ∈ P(N)
iff ῑ(0) = 0̄, ῑ(j) 6= 0̄ for 1 6 j 6 N , and ῑ(j ) − ῑ(j − 1) ∈ {±(1, 1),±(1,−1)} for
16 j 6 N . Clearly, |P(N)| 6 4N . ForM ∈ N one can write

(0λV̂ )
M−10λQVP =

∑
ῑ∈P(M)

( M∏
j=1

1

F(ῑ(j))− λ
)
Pῑ(M). (28)

Lemma 10.In the case of the model (1) and assuming that the choices (15) and (16) have
been made, there exists a constantĈ > 0 such that

‖0λQVf ‖ 6 Ĉ ‖(0λV̂ )M−10λQVf ‖ 6
(

2|λ|
ω

)ρ ((2|λ|
ω

)−ρ/2
Ĉ

)M
holds true for∀M ∈ N, M > 2, and∀ λ ∈ 3 ∩ [−ω/3, ω/3 ], λ 6= 0.

Remark.Note the type of the estimate: we are able to estimate the vector(0λV̂ )
M−10λQVf

but not directly the operator(0λV̂ )M .
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Proof. We start by restricting the setS of critical indices to a subsetS ′ = {n ∈ S; |n2| > b}.
The boundb ∈ N is required to obey the conditions:
• b > 3,
• 4ω 6 min{1(k),1(k − 1)} for ∀ k > b,
• L(n) > 2 for ∀ n ∈ S, |n2| > b.
The second requirement is dictated by the assumption (23) of lemma 9 and the third one is
possible since from the estimate (20) it follows that

lim
n∈S, |n2|→∞

L(n) = +∞.

Clearly, since|F(n)− λ| > ω/6 for n 6∈ S, |λ| 6 ω/3, there exists a constantC3 > 0
such that

|F(n)− λ| > C3 for ∀ n 6∈ S ′ ∪ {0̄}, ∀ λ ∈ 3 ∩ [−ω/3, ω/3 ].

Without loss of generality we can restrict ourselves toM > 2. For each̄ι ∈ P(M)
the vertices fromS ′ split the path into segments. Consider such a segment of length`,
(ῑ(j), ῑ(j + 1), . . . , ῑ(j + `)), with ῑ(j + `) ∈ S ′, and alsōι(j) ∈ S ′ providedj 6= 0, and
ῑ(j + s) 6∈ S ′ for 16 s 6 `− 1. However, in order not to count it twice, we do not relate
the contribution from the vertex̄ι(j) with the segment.

We distinguish two cases. If̀> L(ῑ(j + `)) then lemma 7 implies∣∣∣∣ j+∏̀
s=j+1

1

F(ῑ(s))− λ
∣∣∣∣ 6 ( 1

C3

)`−1 (2|λ|
ω

)−ρ
C `

1 . (29)

Consider now the casè< L(ῑ(j + `)). The possibilityj = 0 is excluded since this
would imply ` < |ῑ(`)2| 6 `. Thus ῑ(j ), ῑ(j + `) ∈ S ′ and necessarilȳι(j) = ῑ(j + `) as
follows from

|ῑ(j + `)1− ῑ(j )1| 6 ` < dist(ῑ(j + `)1, pr1(S) \ {ῑ(j + `)1}).
Consequently,̀ is even. We shall call a segment of this type short loop. To any short
loop there exists an opposite short loop(ῑ′(j), ῑ′(j + 1), . . . , ῑ′(j + `) = ῑ′(j)) defined by
ῑ′(s) := 2ῑ(j )− ῑ(s), j 6 s 6 j + `; hence the base point is the same,ῑ′(j) = ῑ(j ). Now
we are approaching the compensation step. The contribution of two opposite short loops
equals

j+∏̀
s=j+1

1

F(ῑ(s))− λ +
j+∏̀
s=j+1

1

F(ῑ′(s))− λ

= 1

F(ῑ(j))− λ
(j+`−1∏
s=j+1

1

F(ῑ(s))− λ −
j+`−1∏
s=j+1

1

−F(ῑ′(s))+ λ
)
. (30)

In order to estimate the difference of products on the right-hand side of (30) one can use
the identity

u1 · · · uN − v1 · · · vN =
N∑
s=1

u1 · · · us−1(us − vs)vs+1 · · · vN (31)

and lemma 9. In this way one arrives at

|expression (30)| 6 (`− 1)

(
1

C3

)`−2

C2

(
2|λ|
ω

)−ρ
6 C2C

2
3

(
2|λ|
ω

)−ρ ( 2

C3

)`
. (32)
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In order to treat this type of compensation systematically let us splitP(M) into
equivalence classes. Two paths are equivalent if and only if one is obtained from the
other by replacing several short loops by their opposites. Thus a path containings short
loops belongs to a class with 2s elements. Schematically one can write∑

all paths

∏
all segments

=
∑

equivalence classes

∏
pairs of short loops

×
∏

other segments

For a path̄ι ∈ P(M) denote byN = N(ῑ) the number of vertices belonging toS ′. Obviously,
N(ῑ) is constant on every equivalence class. Relying on the estimates (29) and (32) one
concludes readily that there exists a constantĈ > 0 such that∣∣∣∣ ∑

equivalence class

M∏
j=1

1

F(ῑ(j))− λ
∣∣∣∣ 6 (2|λ|

ω

)−ρN (
Ĉ

4

)M
.

Sinceb > 3 we havēι(1), ῑ(2), ῑ(3) 6∈ S ′ and consequently, asL(n) > 2 for all n ∈ S ′,
2N(ῑ) 6 M − 2.

To complete the proof it is sufficient to estimate the number of equivalence classes from
the above simply by|P(M)| 6 4M (cf equation (28)). �

With the estimate given in lemma 10, it is quite straightforward to derive the following
existence (but not uniqueness) result.

Lemma 11. Under the same assumptions as in lemma 10, the series (27) converges to a
solutiong(β, λ) of the equation (6) provided(β, λ) belongs to the domain

λ ∈ 3 ∩ [−ω/3, ω/3 ] |β| 6 (2|λ|/ω)ρ/2/2Ĉ. (33)

For eachλ ∈ 3∩ [−ω/3, ω/3 ], λ 6= 0, the vector-valued functiong(β, λ) is analytic inβ
on the corresponding neighbourhood of 0 and

‖g(β, λ)+ β0λQVf ‖ 6 2Ĉ2β2. (34)

Now we can give a precise meaning to the right-hand side of the fixed-point equation
(8). For (β, λ) from the domain (33)

G(β, λ) := β 〈QVf, g(β, λ)〉 =
∞∑
k=1

β2k G2k(λ)

G2k(λ) := −〈QVf, (0λV̂ )2k−20λQVf 〉.
(35)

In our particular example we haveG2k+1(λ) = 0 for k > 1 but generally this need not be
the case. As a consequence of lemma 10 we obtain

|G2k(λ)| 6 ‖V ‖
(

2|λ|
ω

)ρ ((2|λ|
ω

)−ρ/2
Ĉ

)2k−1

. (36)

For our model in particular (E(1) = 1)

G2(λ) = −〈QVf, 0λQVf 〉 = 4(E(1)− λ)
ω2− (E(1)− λ)2

andG2(0) 6= 0.
We shall impose a stricter bound onλ, |λ| 6 λ?, where 0< λ? 6 ω/3, and we require

λ? to be sufficiently small so that

• |G2(λ)−G2(0)| 6 |G2(0)|/2,
• (2λ?/ω)1−ρ 6 |G2(0)|/(8ωĈ2),
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• λ
1/2
? 6 |G2(0)|3/2/(16‖V ‖ Ĉ2),

• (2λ?/ω)ρ/2 6 |G2(0)|/(2‖V ‖ Ĉ).
Recall that1

2 < ρ < 1 (cf equation (16)). Set

B(λ) := 2(|λ|/|G2(0)|)1/2.
The first requirement implies|G2(λ)| > |G2(0)|/2 and sgnG2(λ) = sgnG2(0). Owing to
the second requirement we have

|λ| 6 λ? H⇒ B(λ) 6 (2|λ|/ω)ρ/2/2Ĉ
and so the conditionsλ ∈ 3∩ [−λ?, λ? ], |β| 6 B(λ) determine a subdomain of (33). From
the third requirement it follows that

|λ| 6 λ? H⇒ 2‖V ‖ Ĉ2B(λ)3 6 |λ|. (37)

Finally, a routine calculation based on the definition (35) ofG, the estimate (36), and the
fourth requirement yields the inequality

|∂βG(β, λ)− 2βG2(λ)| < |β| |G2(0)| 6 2|β| |G2(λ)| (38)

valid for 0< |λ| 6 λ?, 0< |β| 6 (2|λ|/ω)ρ/2/2Ĉ. Consequently

sgn∂βG(β, λ) = sgnβG2(λ) = sgnβG2(0). (39)

Lemma 12. Under the same assumptions as in lemma 10, for eachλ ∈ 3 ∩ [−λ?, λ? ],
sgnλ = sgnG2(0), there exist exactly two solutionsβ±(λ) to the equationλ = G(β, λ)
in the interval [−B(λ), B(λ) ], and there is no solution for sgnλ = − sgnG2(0). The two
solutions are non-zero, differ in sign, and we choose the convention

−B(λ) 6 β−(λ) < 0< β+(λ) 6 B(λ).

Thenλ is an eigenvalue of the operatorsK + β±(λ) V .

Remark. Since, in the case of our model,G(β, λ) is even inβ we have consequently
β−(λ) = −β+(λ). But, of course, this is not a general feature.

Proof. Obviously,G(0, λ) = 0. Let us show that|G(±B(λ), λ)| > |λ|. From equation (34)
we obtain

|G(β, λ)− β2G2(λ)| = |β 〈QVf, g(β, λ)+ β0λQVf 〉| 6 2‖V ‖ Ĉ2|β|3

and, owing to (37),

|G(±B(λ), λ)− B(λ)2G2(λ)| 6 |λ|.
On the other hand,

|B(λ)2G2(λ)| > 4
|λ|
|G2(0)|

1

2
|G2(0)| = 2|λ|.

In this way we have also verified that

sgnG(±B(λ), λ) = sgnG2(λ) = sgnG2(0).

Now existence follows from the fact that the functionG(β, λ) is continuous (even analytic)
in β. The uniqueness is a consequence of the monotonic behaviour (cf equation (39)).�
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5. Properties of the functionλ(β)

We intend to invert the functionsβ+(λ) andβ−(λ) in order to obtain the desired function
λ(β) defined respectively on setsI+ andI−, with I± ⊂ R±, and we naturally setλ(0) = 0.
Thus the total domain forλ(β) is I = I− ∪ {0} ∪ I+. λ(β) is positive (negative), except
of λ(0) = 0, if G2(0) is positive (negative). The existence of the inverted function follows
from the monotonic behaviour of the original functionsβ±(λ).

We shall need the following lemma.

Lemma 13.The functionG(β, λ) defined in (35) fulfills the equality

G(β, λ2)−G(β, λ1) = −(λ2− λ1) 〈g(β, λ2), g(β, λ1)〉
for all

λ1, λ2 ∈ 3 ∩ [−ω/3, ω/3 ], |β| 6 (2 min{|λ1|, |λ2|}/ω)ρ/2/2Ĉ. (40)

Proof. Note that0λ2−0λ1 = (λ2−λ1) 0λ20λ1 onD(0λ1)∩D(0λ2) and consequently, using
(31),

〈QVf, (0λ2V̂ )
k0λ2QVf − (0λ1V̂ )

k0λ1QVf 〉

= (λ2− λ1)

k∑
j=0

〈(0λ2V̂ )
j0λ2QVf, (0λ1V̂ )

k−j0λ1QVf 〉.

Now the identity can be verified easily with the aid of (27). �
From equation (34) one deduces that〈g(β, λ2), g(β, λ1)〉 > 0 whenever|λ1|, |λ2| are

sufficiently small and|β| obeys (40). Thus we find thatG(β, λ) is strictly decreasing inλ
for everyβ fixed. The same is true for the function8(β, λ) := G(β, λ)− λ.

This is an elementary exercise to verify that the functionsβ±(λ) are strictly monotonic
provided one uses the equality8(β±(λ), λ) = 0 and the fact that8(β, λ) is monotonic in
β (c.f. (39)) and strictly monotonic inλ. We can formulate our conclusion as follows.

Lemma 14.There exists a boundλ??, 0< λ?? 6 λ?, and a functionλ(β) defined onI ⊂ R
such that 0∈ I and λ(0) = 0, β±(λ(β)) = β for ∀β ∈ I ∩ R±, and the range of both
λ(β)|I ∩ R+ andλ(β)|I ∩ R− equals either3 ∩ [ 0, λ?? ] or 3 ∩ [−λ??, 0 ] depending on
whetherG2(0) is positive or negative. For∀β ∈ I , λ(β) is an eigenvalue of the operator
K + βV .

That one has to abandon some values of the coupling constantβ and determine the
perturbed eigenvalue as a functionλ(β) defined on a domainI possessing ‘holes’ seems to
be a typical feature of the perturbation theory of dense point spectra. To treat functions of
this type one can refer to the celebrated Whitney Extension Theorem (see Stein 1970). In
fact, its proof in the one-dimensional case is rather elementary. We shall need the following
very particular version.

Lemma 15.Let χ be a real function defined on a closed subsetY ⊂ R, χ being monotonic,
and suppose that there exist two constants 0< A 6 B such that

A|y1− y2| 6 |χ(y1)− χ(y2)| 6 B|y1− y2| for all y1, y2 ∈ Y.
Then there exists an extensioñχ defined onR, χ̃ |Y = χ , and χ̃ is again monotonic and
obeys the same inequalities but this time on the whole lineR,

A|y1− y2| 6 |χ̃(y1)− χ̃(y2)| 6 B|y1− y2| for all y1, y2 ∈ R.
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Proof. The complement ofY is an open subset ofR and hence at most countable disjoint
union of open intervals. One defines the functionχ̃ linearly on these intervals requiring it
to be continuous. Provided the interval in question is half-infinite thenχ̃ is defined again
linearly with the slope lying betweenA andB. The inequalities for̃χ defined this way are
easy to verify; for the left one we require thatχ be monotonic. �

We wish to show that 0 is a point of density for the setI . We already know that this
is true for the set3 (lemma 6). The intermediate step is given by

Lemma 16. Assume that a real functionϕ(x), defined on a setX ⊂ [ 0,+∞[, is strictly
increasing,ϕ(0) = 0 (⇒ 0 ∈ X), and the setY = ϕ(X) is closed. Moreover, suppose that
there exist two constants 0< A 6 B such that

A|x 2
1 − x 2

2 | 6 |ϕ(x1)− ϕ(x2)| 6 B|x 2
1 − x 2

2 | for all x1, x2 ∈ X. (41)

Then it holds that

lim
η↓0
|Y ∩ [ 0, η ]|/η = 1 H⇒ lim

δ↓0
|X ∩ [ 0, δ ]|/δ = 1. (42)

Proof. Apply lemma 14 to the functionχ(y) = (ϕ−1(y))2 (the corresponding constants are
0 < 1/B 6 1/A). The extensionχ̃ is again strictly increasing,̃χ(y) > 0 for y > 0, and
χ̃(R+) = R+. Defineϕ̃ onR+ by ϕ̃(x) = y iff x2 = χ̃(y), i.e. ϕ̃ is the inverse of(χ̃ |R+)1/2.
Clearly, the functionϕ̃ is an extension ofϕ, ϕ̃|X = ϕ, it is again strictly increasing, and the
inequalities (41) hold for̃ϕ on the whole positive half-line. Consequently,ϕ̃ is absolutely
continuous on every bounded interval,ϕ̃′ exists almost everywhere, and it holds that

ϕ̃(x) 6 B x2 and 2Ax 6 ϕ̃′(x) for (almost) all x > 0.

Denote byXc and Y c the complements ofX and Y in [ 0,+∞[, respectively. The
implication (42) is equivalent to

lim
η↓0
|Y c ∩ [ 0, η ]|/η = 0 H⇒ lim

δ↓0
|Xc ∩ [ 0, δ ]|/δ = 0. (43)

Choosep, 1< p < 2, and letq be the adjoint exponent,p−1 + q−1 = 1. We shall verify
the inequality

δ−1 |Xc ∩ [ 0, δ ]| 6 B

2A

(
1− p

2

)−1/p (
ϕ̃(δ)−1 |Y c ∩ [ 0, ϕ̃(δ) ]|)1/q

. (44)

It is clear that (43) is a consequence of (44). We have

|Xc ∩ [ 0, δ ]| =
∫
Y c∩[ 0,ϕ̃(δ) ]

dy

ϕ̃′(ϕ̃−1(y))
6
√
B

2A

∫
Y c∩[ 0,ϕ̃(δ) ]

y−1/2 dy

sinceϕ̃′(ϕ̃−1(y)) > 2A ϕ̃−1(y) > 2A (y/B)1/2. The Ḧolder inequality then gives∫
Y c∩[ 0,ϕ̃(δ) ]

y−1/2 dy 6
(∫ ϕ̃(δ)

0
y−p/2 dy

)1/p (∫
Y c∩[ 0,ϕ̃(δ) ]

dy

)1/q

6
(

1− p
2

)−1/p√
Bδ

(
ϕ̃(δ)−1 |Y c ∩ [ 0, ϕ̃(δ) ]|)1/q

and (44) follows immediately. �
Observe that the property (2) given in proposition 1 is equivalent to

lim
δ↓0
|I ∩ [ 0, δ ]|/δ = 1 and lim

δ↓0
|I ∩ [−δ, 0 ]|/δ = 1.
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Thus we can treat the right and the left neighbourhood of 0 separately. We can now apply
lemma 16 to the functionλ(β) instead ofϕ(x), and to the setsI+ ∪ {0} andI− ∪ {0} instead
of X. Observe from the definition (14) that3 is closed. Let us show that the condition
(41) is fulfilled as well. Assume thatβ1, β2 ∈ I, |β1| < |β2|. Then(β1, λ(β1)), (β2, λ(β2))

and(β1, λ(β2)) belong to the domain ofG. Write

λ(β1)− λ(β2) = G(β1, λ(β1))−G(β1, λ(β2))+G(β1, λ(β2))−G(β2, λ(β2))

and use lemma 13 to obtain

λ(β1)− λ(β2) = G(β1, λ(β2))−G(β2, λ(β2))

1+ 〈g(β1, λ(β1)), g(β1, λ(β2))〉 .
Deduce from (34) that

0< 〈g(β1, λ(β1)), g(β1, λ(β2))〉 = O(|β2|2) as |β1| 6 |β2| → 0

and note that (38) can be rewritten as

|∂β2G(β, λ)−G2(λ)| 6 |G2(0)|/2.
One readily concludes that there exist constants 0< A 6 B and a boundβ? > 0 such that

A|β 2
1 − β 2

2 | 6 |λ(β1)− λ(β2)| 6 B|β 2
1 − β 2

2 | for all β1, β2 ∈ I ∩ [−β?, β? ].

Lemma 17.0 is a point of density for the setI .

Now we can approach the problem of the asymptotic series. Consider first the following
situation. Let{Hk}∞k=0 be a sequence of complex meromorphic functions such that 0 is a
regular point for all of them and, moreover,H0(0) = 0, H ′0(0) 6= 0. Then

8(x, y) :=
∞∑
k=0

xk Hk(y) ∈ C[[x, y]]

is well defined as a formal power series inx andy. Denote byϕf (x) ∈ C[[x]] the solution
to the problem

ϕf (0) = 0 and 8(x, ϕf (x)) = 0

which exists and is unique in the class of formal power series. Set

R8 := C \
∞⋃
k=0

{the poles of the functionHk}

and letR(y) be the radius of convergence of the series8(x, y) in the variablex, with
y ∈ R8 being fixed.

Lemma 18.Let ϕ be a complex function defined onX ⊂ C and assume that:

(i) 0 ∈ X is an accumulation point ofX,
(ii) ∀ x ∈ X, |x| < R(ϕ(x)) (and so the value8(x, ϕ(x)) is well defined),
(iii) ϕ solves the problem

ϕ(0) = 0 and 8(x, ϕ(x)) = 0 ∀ x ∈ X
(iv) there existsµ > 0 such that

8N(x, ϕ(x)) = O(|x|µ(N+1)) ∀N ∈ Z+

8N(x, y) :=
N∑
k=0

xk Hk(y).

Thenϕf (x) is an asymptotic series forϕ(x).
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Proof. Denote byϕfM the truncation of orderM of ϕf (thusϕfM is a polynomial of degree
at mostM andϕf (x)− ϕfM(x) ∈ xM+1C[[x]]). We have to show that

ϕ(x)− ϕfM(x) = O(|x|M+1) ∀M ∈ Z+.
Denote byϕ(N)(x) the unique solution to the problem

ϕ(N)(0) = 0 and 8N(x, ϕ
(N)(x)) = 0

in the class of germs of holomorphic functions atx = 0. Clearly,

ϕ
f

M(x) = ϕ(N)M (x) if N > M.
Note that the requirement (4), withN = 0, means thatH0(ϕ(x)) = O(|x|µ). Since
H ′0(0) 6= 0 we find that limx→0 ϕ(x) = 0. Obviously, it also holds that limx→0 ϕ

(N)(x) = 0.
Observe that∂y8N(0, 0) = H ′0(0) 6= 0. Consequently, for anyn ∈ Z+, there exist positive
constantscN, δN such that

|8N(x, ϕ(x))−8N(x, ϕ
(N)(x))| > cN |ϕ(x)− ϕ(N)(x)| ∀ x ∈ X |x| 6 δN .

Fix M ∈ Z+ and chooseN ∈ Z+ such thatN > M andµ(N + 1) > M + 1. Write

ϕ(x)− ϕfM(x) = ϕ(x)− ϕ(N)(x)+ ϕ(N)(x)− ϕ(N)M (x) = ϕ(x)− ϕ(N)(x)+O(|x|M+1).

On the other hand

cN |ϕ(x)− ϕ(N)(x)| 6 |8N(x, ϕ(x))−8N(x, ϕ
(N)(x))| = |8N(x, ϕ(x))|

= O(|x|µ(N+1)).

We conclude thatϕ(x)− ϕfM(x) = O(|x|M+1), as required. �
Lemma 17 is directly applicable to the function8(β, λ) := G(β, λ) − λ and to our

solutionλ(β).

Lemma 19.The formal power series
∑∞

M=0 ξM β
M , with ξM given in (10) and (13), is an

asymptotic series for the functionλ(β) defined onI .

In summary let us state that lemmas 14, 17 and 19 jointly verify the existence and the
properties of the functionλ(β) and thus the proof of proposition 1 has been completed.
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