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Abstract. We study an example of a perturbed Floguet Hamiltoraa 8V depending on a
coupling constan. The spectruns (K) is pure point and dense. We pick up an eigenvalue,
namely Oe o(K), and show the existence of a functiang) defined on/ C R such that

AB) € o(K + BV) for all B € 1, 0 is a point of density for the set, and the Rayleigh—
Schibdinger perturbation series represents an asymptotic series for the fuhgtipnAll ideas

are developed and demonstrated when treating the explicit example, but some of them are
expected to have an essentially wider range of application.

1. Introduction

A common problem occurring frequently in theoretical physics is the eigenvalue problem
for a perturbed operatok + gV, whereg is a coupling constant, under the assumption
that Fp is a known eigenvalue of the unperturbed operdor The Rayleigh—Scladinger

(RS) series gives a formal solutign(g), with F(0) = Fp, as an unambiguously determined
formal power series. The regular perturbation theory due to Rellich (1937) and Kato (1966)
justifies this formal series as an analytic function well defined on a neighbourhgbe-di
provided one essential condition is fulfilled, namely the eigenvdigies o (K) must be
isolated On the other hand, the situation when an eigenvalu& a§ not isolated is far

from being exceptional and recently attracted considerable attention (see Simon 1993 and
references therein).

The so-called Floguet Hamiltonians represent a class of operators having even a dense
pure point spectrum in many interesting examples. They were introduced as an important
tool for the study of time-dependent systems (see, e.g., Sambe 1973, Howland 1979, Yajima
1977). A distinguished subclass is formed by the systems where the potéftjals T-
periodic and bounded. The period is usually considered as a parameter. After rescaling
the time, the potentiaV (r) becomes 2-periodic and the frequenay = 27/ T appears in
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front of the time derivative. Thus one is lead to study the oper&ter gV (¢) acting in
K = L%(T,dt) ® H, with T = R/27Z, and

K = —iwd;, + H w>0

where H is the ‘true’ Hamiltonian acting as a self-adjoint operator in a separable Hilbert
spaceH. We use the loose notation identifyidgwith 9, ® 1, H with 1® H, etc. Provided
the spectrumo (H) is pure point the same is true fer(K) = wZ + o (H). It is known
thato (K) is dense inR for almost allw > 0 as soon as sup(H) = +oo. Recently the
spectrum ofK + BV (¢) has been studied by the aid of a quantum version of the KAM
method due to Bellissard (1985) (see also Combescure 1987, Bellissard and Vittot 1990,
Bleher, Jauslin and Lebowitz 1992, Duclos aSihvicek 1996a) as well as by adiabatic
tools (Howland 1989, 1992, Nenciu 1993, Joye 1994).

In the present paper we focus on a particular example Wite L3(T, dx), namely

H = —af (+ periodic boundary conditions V(t) = 4 cost COSx. Q)

Clearly,o (H) = {E(k) = k?; k € Z} and soc (K) = {F(n) = wn1 + E(n); n € Z x 7).

The spectrum off is degenerate and that makes the problem more complicated; the only
non-degenerate eigenvalue Ai50) = 0. This is why we restrict ourselves to eigenvalues
F(n) of K with n, = 0. In order to be specific, we shall even consider the only eigenvalue
F(0) = 0. We are going to address the question whether there exists an eigehy&)uef

the operatoX + 8V (¢) which could be considered as a perturbatiorF¢d) = 0 depending

on the paramete$. A possible answer is given inX| stands for the Lebesgue measure of

a measurable seX)

Proposition 1. For almost allw > 0, there exists a real-valued functiagg) defined on a
set/ C R with the properties:

(i) forall B €I, A(B) is an eigenvalue oK + BV (z),

(ii) lim s 0|7 N[—6,8]1/286 = 1,

(iii) the function A(B) has an asymptotic expansion fat= 0 coinciding with the formal
Rayleigh—Schidinger perturbation series for the eigenvalu@) = 0 of K.

In fact, our final goal (not achieved in this paper) is to prove a similar proposition for
a much wider class of Floquet Hamiltonians. More precisely we expect that statements (i)
and (ii) of proposition 1 remain valid in the following more general situation: (a) the
Hilbert spaceH is separable but otherwise unspecified, (b) the spectrum obnsists only
of eigenvaluess (H) = {E(k); k € Z,} with uniformly finite multiplicity and fulfill the
gap condition:

Jo >0 inf EEFDZE® _ o @)
keZ. (k + 1)~

(note thate = 1 in our example), (cV is [5] + 1 strongly time differentiable as a map
from T into the bounded operators i (note that here as well as in what follows] [
denotes the integer part o), and (d) the unperturbed eigenvalue is any of the eigenvalues
of K = —iwd, + H. In addition we think that the Rayleigh—Sddinger perturbation series
still exist up to an order depending on the regularityVof

These more general conditions cover a large class of quantum driven systems as, e.g.,
the pulsed rotor (our example), Bellissard 1985, the quantum Fermi accelerator (Fermi 1949,
Ulam 1961, Duclos an@fovitek 1996b) as well as other quantum systems like a Bloch
electron driven by a constant electric force in singular periodic potentials (Ao 1989, Avron
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et al 1994). The relevance of such models to study the mechanism behind the phenomena
of dynamical stability and localisation is well known.

Condition (2) on the growth of the gaps in the spectrummbfwas put forward in
Howland 1989 and is used explicitely or implicitely in most of the known results quoted
above. However, Combescure (1987) considered the«zas® with an extra assumption,
leading to non-realistic potential. One would even like to treat negatj\as in the famous
‘quantum ball’ model (see Benvenutt al 1991). We think that the study of such more
difficult cases will require ‘compensation techniques’ of the type which is used in lemma 10
below. This is also one of the purposes of this paper, namely to get some training in using
such a new tool. Note that we learned such techniques in Eliasson 1988.

As this programme seems to be extremely complex, we prefer to develop and
demonstrate the main ideas when treating the explicit example of the pulsed rotor. Even
in this example the proof is far from obvious and straightforward. Apparently, our model
captures most of the basic features but, on the other hand, it makes some simplifications
possible and can be treated at a relatively elementary level. In particular, our model is very
regular in the following sense: writingV (n; m)} for the matrix elements of the potential
V in the eigenbasis oK we have that:3C > 0, Vr > 0, |V(n,m)| < Cln — m|™" (one
has even exponential bounds), a property which is not true, e.g., for the quantum Fermi
accelerators or the Bloch electron quoted above. On the other hand, the pulsed rotor is not
the simplest choice of example since the spectruni/as two-fold degenerate as already
mentioned above. For example, we could have taes —A on a compact interval with
Dirichlet boundary conditions oH = —A on T with twisted boundary conditions. We
prefer to stick to this example, since we believe that it is more attractive due to its historical
value (see Bellissard 1985).

The rest of the paper is devoted to the proof of proposition 1. However, we shall try,
whenever possible, to consider a more general situation and to propose some ideas that are
also applicable to other models. It might have been possible to follow all the constants in
the proof of proposition 1 and give an explicit bound on the sizé, @fs well as an explicit
lower bound on the measure of N [—4§, §]| with the risk of making the derivation less
transparent. We hope to come back to such a challenge when treating the general situation.

2. Basic equation

The starting point is the eigenvalue equation kot 8V. Assume that O is a non-degenerate
eigenvalue ofK and f is the normalized eigenvector. Lét be the orthogonal projector
onto the eigenspac€f and Q := 1— P. We are seeking. = A(8) € R andg € K such
that Pg = 0 and

(K+BV)(f+8) =1f+g) (3)
Without loss of generality we can assume that
PVP =0. 4)

Apply the projectorsP and Q successively to equation (3). The result is
r=B VS g) ®)
(K+BV —-Mg=—-pOVSf. (6)

Here and everywhere in what follows the hat indicates the restriction ta)Rarthe sense:
X = QX Q| RanQ.
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According to our assumptions[ﬁ is invertible and we sef’y := K~! (defined on
RanQ). For i € o(K) we also define
I o= (K —2)1=(1- Al .
KeepingA as an auxiliary parameter one can solve (6) formally as

g=2g(B, 1) =—BL+ B, V) T, QVf. @
Inserting (7) in (5) we obtain a fixed-point equation for the eigenvalaeA(8):
A=G(B,2)  where G(B, 1) = —pXQVf, (1+BIV) 'TLQVf). (8)

The trick with the projectors and keepingas an auxiliary parameter is well known and
is related to various names. Note that in the regular case, whendist(0, o (K)) > O,
one can re-derive the Rellich—Kato theorem in this way. Indeed, we hByg = 4!
and (1 + BT, V) is invertible (on RarQ) provided || and |A| are sufficiently small. The
implicit function theorem applied to (8) then gives the result.

To solve (8) formally one can usetBnann-Lagrange formula which can be proved
with some combinatorics, and not necessarily with the Cauchy residuum theorem. Write

GB. 1) =) du(B)rY
M=0

where

00

PuBy==Y. > (=PTHQVS KTMVK . VKTHQV).

k=1 peNk, |ul=k+M

The formal solution.(8) reads

MBY=) Y 2uB)- P (B) =) Em Y Q)
N=1veT(N) M=2

where T(N) C Zf is the set of rootedN-trees: v = (vy,...,vy) € T(N) iff
vi+--+vw < N—k 2< k<N, and|vy] = N — 1. Consequently, one obtains an
expression for the coefficients,:

[M/2]

Ew=) ).

N=1veT(N) k(D),..k(N)eN p(D)eND . u(N)eNKN)

N
> (_1)M+N H<QVf’ Ky g—rWz .y K—*0ko QVf) (10)
j=1

with the summation range being restricted by the conditions
kD) +---+k(N)+ N=M lwDI=k(G)+v; 1<j<N.
Of course, this result must coincide with the standard RS perturbation series written in
the form (see Kato 1966):
(=M

Em i

tr (V}%kl S ViékM) (11)
byt tky=M—1, k;>0
where the symboR* is defined by:R® = —P , and fork > 1, R¥|RanP = 0, R¥|RanQ =
K~*. The equality between (10) and (11) can be verified quite straightforwardly using (4)
and the following fact.
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Lemma 2. For a givenN € N and eachv = (01,...,0n) € Zﬁ’ obeyinglo| = N -1
there exists exactly one cyclic permutation ®f 6’ = (oy_ms1,.--»ON, 01, « .., ON_m)
(determined byn € {0, 1, ..., N — 1}), such thatv’ € 7 (N).

Hence each term of (10) is a grouping of many terms of (11) where we take into account
the cyclic property of the trace.

However, in the case when(K) is dense inR and so dist0, o (K)) = O it seems to
be hopeless to consider the RS series as a convergent series. The complication comes from
arbitrarily large powers ok ~* in (10) (or (11)) since among eigenvalues Kfthere are
arbitrarily small numbers, the so-called small denominators. Probably the maximum one
can attempt in this situation is to verify the finiteness of the coefficiept¢generally up
to some order depending on the smoothnes® @f)) and to show that the RS series is
asymptotic for the function.(8).

Let us specify the formula (10) in our example (1). Considé€r) as an operator i
and denote by (m, n), m,n € Z?, its matrix elements in the eigenbasis Kf We have

1 if m—ne{+d1), £, —1)}

V(m,n) = (12)
0 otherwise.

Concerning the eigenvalues &f, there is a degeneracy
F(n1,np) = F(n1, —np) = wny + nj.

Let L = Z(1, 1) + Z(1, —1) be a sublattice ifZ? and denote byPy(N) C (Z>)N+! the set
of closed paths if. of length N with the base poin®: (7(0), (1), ...,7(N)) € Po(N) iff

10)=1N)=0,1(j) #0for 1< j < N —1,1(j) —1(j — 1) € {£(1, 1), £(1, —1)} for

1< j < N. Note thatPy(N) = ¢ for N odd. Clearly

k
(QVf. RMVR™ ... VRmovey = Y []Fauin™. (13)

iePolk+1) j=1

The only thing we can claim at this moment is thatgll, 2 < M, are finite for the sum
on the right-hand side of (10) is finite.

3. Diophantine estimates
In order to cope with small denominators we need diophantine estimates. Suppose that we
are given two sequences and E such that

¥ :N—]0, 3] > Yk < oo

keN
and

E :N —]0, +oo[ IicngE(k) =:dg > 0.
€
SetF(n) == wni+ E(ny), n € Z x N, and relate the set
Q@) ={w>0 VneZxN, |[F(n)| 2 oyy(nz)}
to a constany > 0. It is a rather standard procedure to show
Lemma 3.If y < dg/a <1 then

110, a]\ Q) < (12a Zwac)) 2

keN
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Proof. Write
0.al\2 = |J Qbadn)

neZxN

where
Qpad(n) = {w €10, a]; |F(n)| < wy ¥ (n2)}.
Considern € Z x N such thatQp,q(n) # @. Clearly
o € Qpad(n) = E(n2) — wyy(n2) < |oni| < E(nz) + oy y(n2).
We shall need two consequences of these inequalities. First, since
wyy(n2) < dp/2< E(nz)/2
we obtain
0 < E(nz)/2a < |nyl.

Second, as we now know thpt;| > 1 > y ¥ (n,), we have

E(nZ) E(}’lz)
_ << .
|1l + y ¥ (n2) 1l — 7 v (n2)
Consequently
|Qoadn)] < 2y (na) E(ny) 3V1ﬂ(n2)E(n2).

= yn)? a2
Furthermoren; < 0 since otherwise; > 1 and

F(n) = wn1 + E(n2) > o > woyy(nz)
for all w € Qpag(n) # @, a contradiction. We conclude that

110,a]\ QI < D By ¥ Ena) Y

npeN ni1eN
n1>E(nz)/2a

3 e

To complete the proof observe that, for- 0,
1 2
— < — ([l

2SN -
reii tox K X

We can now introduce the s&t (depending on/) of ‘non-resonant’ frequencies:

Q:={w>0 inf [FO)|/¥nz) >0} = VLJOQW)'

As an immediate consequence of lemma 3 we have
Lemma 4. The complement [0+oo[ \Q2 is of zero measure in the Lebesgue sense.

In the case of our modeE (k) = k2. Extend the definition ofy by v (0) = 1 and we
define alsoF ((k, 0)) := wk. We fix w € © once for all (and we do not emphasize this fact
in the rest of the paper). Then there exigtsO < y < 1, such that

|F(n)| > wy ¥(n2) forall neZx7Z, n+#0.

Rather than treating the formal RS series (9), we wish to tackle the fixed-point
equation (8). This means coping with expressions involving the opefgtand hence
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the numbers F(n) — A)7%, i.e. the eigenyalues df,. The estimate orF(n) — A will be
governed by a constapt and a sequencg of positive reals and we require

p€[0,1] and V) <y (k)2 Vkel,.
For a given sequencE as above we define a satof ‘good’ parameters.:
A={AeR;, VneZxN, |[F(n) —A|l 2> wy (2|)L|/w)”1}(n2)}. (14)

Note that|F(n) — 4| > w/2 if n1 # 0, np = 0 and|A| < w/2. It is important for us to
control the measure of.

Lemma5.1f 0 < § < § then

|[—8w, sw] \ A| < 2wy (25)° Yo Y.
keN, ¥ (k)<25/y

Proof. Fix 8, 0 <8 < , and write

[—bw. 6] \ A = |_J Avadk)
keN

where
Apad(k) = {k € [-bw, dw]; mianwj + EKk) — Al <0y (2lkl/w)”lﬁ(k)} .
Jje

Observe that for a givert € N there is at most ong € Z such that there exists
A € [-8w, Sw] for which |wj + E(k) — A| < wy (2|A|/w)?¥ (k). Indeed, if another couple
j’, A were to exist then

~ w w
olj = j'l < 20y CAl/o) Y k) + 2]+ 1] < statz=°

@
4
and hencei = j'. It follows that
| Abadk)| < 20y (28)" 9 (k).
Furthermore, ifA € Apadg(k) # ¥ then, sincew € ,
oy Y (k) — 1A < |j + E(k) =4 < joy Y (k)
= oy ¥k <A < s
= Y(k) <25/y.
The assertion is then a direct consequence. O
The standard choice fay and v is
vk)=k"°/2 Uk)=k"T/4 with 1< o < 7. (15)
In this case we obtain another intermediate result as a direct consequence of lemma 5.

Lemma 6.If t > 1+ 0(1 — p) then 0 is a point of density for the sat, i.e.

. 1
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Proof. It is sufficient to estimate

48 /o o0
> e (B) e[ e
keN, k> (y/48)Yo 4 (y/48)Y7

According to lemma 5 we obtain

t/o (x=1/o
18w, 60] \ Al < 27 (28)° ((48) ;1 (4‘3) )
2 Y t—1\y

and so, assuming > 1+ o (1 — p),

. 1

Suppose that the sequenEebeys the gap condition (2) widh > 0. A possible choice
of the constants, r andp which suits the assumption of lemma 6 is

=14« l<o<l+4a and p=1/o.
In our model we have effectively = 1 and so we choose
T=2 l<o<?2 and p=1/0€]1/2,1]. (16)

Let us now derive some consequences of the above diophantine estimates in combination
with the gap condition (2). Suppose once again that the spectrubh isfpure point and
equals{E (k)}rez,, E(0) = 0, and thatE obeys the gap condition (2). It is quite useful to
observe that another inequality follows straightforwardly from (2):

. Cr . e .
|E<J)—E<k>|>a—fl|f—k|ma><{1,k} VjkeZ,. (17)

We shall denote byP,, n € Z x Z, (or Z x Z in our model), the eigenprojectors a&f
corresponding to the eigenvalué¥n); we haveP = P; with F(0) = 0. We set also
Qn =1- P,.

Another important observation coming from the gap condition is that those eigenstates
P, which can potentially contribute by small denominators are distributed rather rarely in
the half-planei, > 0. Let S designate the set of ‘critical’ indices defined by

neSiff Fn)e]—w/2, w/2]\{0}. (18)

Clearly, for eachn, € N there exists exactly one; € Z (necessarilyz; < 0) such that
nedS; (n,0) ¢S forall ny # 0, and we trea = 0 separately, since it corresponds to
the eigenstate® to be perturbed. Furthermore,sif,n € S andm, < ny then|mq| < |n|.
Roughly speaking, the indices from the Seare situated close to the curvg = —E(n2) /w.
We setPs =), s P., Qs := Q — Ps. Evidently, [T'0Qsll < 2/w.

Let us introduce a functiod. defined onS:

L(n) :=min{|ns|, dn)} (29)
where

d(n) :=dist(n, pry(S\ {n})) = min  |nj —ng| < dist(ng, pry(S) \ {n1})

n'eS, |nh—nz|=1

and py, is the projection onto the first coordinate axis.



Perturbation of an eigenvalue from a dense point spectrum 7175

Lemma 7.Assume that the functiofr occurring in the definition (14) of the sét satisfies

sup k=ML | log (k)| < oo.
keN

Then there exists a constafif > 1 such that
|F(n) — Al > (2JAl/w)” C;H VneS VaieA.

Proof. It is sufficient to findC, so that
wy ¥(nz) > maxc; ™, ¢ ")
holds for alln € S. Observe that for any couple, n € S, m # n, we havem, # n, and
wlny —ma| = |E(n2) — E(ma)| — |F(n) — Al — [F(m) — Al
and consequently, by virtue of (17) and the definition (18)%of
d(n) 2 (Cp/(a + 1) n2|” — . (20)
The rest of the proof is self-evident. a

We are going to verify one more estimate related to the fundtion defined in (19).
To this end we shall need the following lemma.

Lemma 8.Let Ag, A1, ..., Ay be a family of positive numbers. Then it holds that
1 1 1
———| < max |— — )
A+ Ax+- -+ Ay LA 1<k<e | Ay Ar_1

Proof. The proof follows immediately from the identity
1 1
A+Ar+---+ A, LA

=22 1(A+ + Ay + ! 1(A+ + Ay)
AV A ¢ Ay Ar) TP ¢

< 1 1 ) } 1
Ay Aj_1 ¢ A1+'~'+Ag.
Let us define

AE(Kk) :=E(k+1) —Ek), ke Z,

and suppose that still satisfies the gap condition (2J5(0) = 0. Concerning the function
¥ we assume that it is decreasing and

fuNp&(k)/l/}(Zk) = Cy < oo. (21)

The following lemma contains a condition relating the sequercEsand .

Lemma 9. Assume that
1 1 1
sup = - =: Cp < 00. (22)
kez, Y (k) |AEG(+1) AE(k)
Then there exists a constafit > 0 such that for each € S verifying

MIN{AE (n2), AE(ny — 1)} > 4w (23)
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and for allm € Z x N, m # n, from the neighbourhood

2max|ny — myl, Inz — mal} < L(n) (24)
and for allx € A N[ —-w/3, w/3], it holds true that
1

< C2(2Al/@)™" |F(n) — A

F(m) — A + F(m') — A
wherem’ = 2n — m.

Proof. The assumptions have some obvious consequences. First, (23) impliesihatSf
andm, = n, + 1 then|m, — ny| > 3. Furthermore, the condition

2|ny — ma| < dist(ny, pry(S \ {n})) and m#n
implies thatm ¢ S. Thus one finds that
|[Fm)— il > (3 -3 o=io.
Obviously, equation (24) also implies that/2 < m, < 3ny/2. Second, we have
|F(m) — Al = |E(m2) — E(n2)|/6. (25)
Indeed, ifmy # ny then

\F(m) — A > |E(m2) — E(n2)] (1— olma = mal + |[Fn)| + '“)

|E(m2) — E(n2)|

Let n” € S be such thatln, — na| = 1 and sgn, — nz) = sgrimz — np). Then
dist(ny, pri(S\ {n})) < |[n1 — nj| and, owing to (24),

2wlny —my| < wlny —ny| = |[E(ny) — E(nz) + F(n) — F(n)]

w

<|E(mz) = Ema)l+ (5 + )
Note that (n, # ny)
|E(m2) — E(n2)| = MN{AE(n2), AE(n2 — 1)} > do.
Altogether this means that

w|m1—n1|+|F(n)|+|k|<} (a) w a)) 1 5

|E(mp) — E(ny)| S22 \2 2 34w 6
and (25) follows. All the above estimates are also valid#or Now write
1 i 1 _ 2(F(n) — A) + E(mp) + E(m5) — 2E(n2)
Fm)—x F@m)—x (F(m) — M) (F(m’) — A) '

Now to finish the proof, it suffices to study the case — n, = n, — m), # 0. From (25)
one finds that

E(m3) + E(m%) — 2E (n2)
(F(m) —2)(F(m') — 1)

1 1

_2 +
E(m2) — E(n2) ~ E(m) — E(n2)

‘

1 1
‘ E(mz) — E(ng)  (ma —n2)AE(n)

‘ ! ! : (26)

T EGmY — Ema) ~ (my — na) AE(n2)
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Combining lemma 8, the monotonic behaviouryof and assumption (22) we obtain
’ 1 1

_ < CAV(j
EG+0 - EQ) EAE(J‘)‘ 2V Q)

<Ca¥(j— 0.

56 £G o~ taka
E(j)-E(G -0 LAE())
Thus we can estimate the right-hand side of (26) from the above by (cf equation (21))

2C A Y (Min{ma, my}) < 2CACy Y2 Minfma, my)) < 2CACy ¥ (n2)

< (2CACy /wy) 2IA|/w) ™" |F(n) — Al.
This completes the proof. |

Finally note that, with the choice aof (15) and forE(k) = k2, the assumptions of
both lemmas 7 and 8 are satisfied. Thus these two lemmas are applicable to our example
provided the choices (15) and (16) have been made.

4. Solution of the fixed-point equation

We wish to justify the power series
g(B.2) =Y (=PI TovS (27)
k=0

as a solution to the vector equation (6). We start from an estimate whose proof relies heavily
on the very special features of our model. This does not concern the specttirttiod gap
condition (2) would be sufficient) but what is really special is the form of the potential (12).
For eachm e Z? there exist exactly four indices € Z? such thatV,,, # 0. This fact
makes it possible to use some elementary combinatorics in order to treat the summands
in (27). The heart of the proof is a sort of compensation based on lemma 9. This method
of compensations was inspired by the pioneering work of Eliasson (1988).

Recall the definition of the lattick (section 2) and denote F(N) c (Z?)N*! the set of
(unclosed) paths ifi. of length N with the initial vertex0: (7(0), 7(1), ..., (N)) € P(N)
iff 70) =0, i(j) #0for 1< j < N, andi(j) —i(j — 1) e {£(1, 1), £(1, —1)} for
1< j < N. Clearly,|P(N)| < 4". For M € N one can write

. M 1
VM-I, ovp = ( ) P 28
TV) Y ZEPZ(]W) 111 FQG)) =2 M) (28)

Lemma 10.In the case of the model (1) and assuming that the choices (15) and (16) have
been made, there exists a const@nt 0 such that

A N 2(A P 2 —p/2A M
ImoVfl < € ||(FAV)M_1FAQVf||<(L)|> ((") C)

w

holds true fovM e N, M > 2, andvVi e AN[—-w/3,w/3], L #0.

Remark.Note the type of the estimate: we are able to estimate the velt)td?r)Mfll“xQVf
but not directly the operatail™, V).



7178 P Duclos et al

Proof. We start by restricting the sétof critical indices to a subs&’ = {n € S; |n2| > b}.
The boundb € N is required to obey the conditions:
ebh >3,
o 4o < Min{A(k), A(k — 1)} for Vk > b,
e L(n)>2forVneS, |ny >b.
The second requirement is dictated by the assumption (23) of lemma 9 and the third one is
possible since from the estimate (20) it follows that
neS,II\Egl—)oo L(n) -

Clearly, sincelF(n) — 1| > w/6 forn € S, |1 < w/3, there exists a constagg > 0

such that

|F(n) — | > C3 for Vi ¢ SU{0}, VA e AN[—w/3, w/3].

Without loss of generality we can restrict ourselvesMo> 2. For eachi € P(M)
the vertices fromS’ split the path into segments. Consider such a segment of lehgth
@G, t(G+D),...,1(j +0), withz(j + ¢) € §’, and alsa(j) € S’ providedj # 0, and
(j+s)¢8 for1<s <¢—1. However, in order not to count it twice, we do not relate
the contribution from the vertej) with the segment.

We distinguish two cases. > L((j + ¢)) then lemma 7 implies

VA 1 I\ 20\ L,
H F(T(S))—)»'<<C3> (w) i (29)

s=j+1

Consider now the casé < L(i(j + ¢)). The possibility; = 0 is excluded since this
would imply £ < [|i(£)2] < €. Thusi(j),(j + ¢) € S’ and necessarily(j) = i(j + £) as
follows from

[((j + 01— 1(1] <€ < dist@(j + O1, pry(S) \ {t(j +O1.

Consequently¢ is even. We shall call a segment of this type short loop. To any short
loop there exists an opposite short [0Gf(;), 7'(j + 1), ..., 7(j +¢) = 7 (j)) defined by

U(s) :=21(j) —1(s), j <s < j—+¢; hence the base point is the sarti¢j) = 7(j). Now

we are approaching the compensation step. The contribution of two opposite short loops
equals

j+¢ j+¢
Jj+ 1 J+ 1

ZJI_L Fas) -4 ZJI_L F@(s) — %
1 -1 jte—1
_ _ 30
Fa() — (111 F(is)) — IL “F@ ) +A> (30)

In order to estimate the difference of products on the right-hand side of (30) one can use
the identity

ul"'”N_Ul"'UN=Zul"'us—l(us_Us)vs+1"'UN (31)

and lemma 9. In this way one arrives at

=2 —p -p ¢
lexpression (30)< (¢ — 1) <1> Cs (2M|> < CC% <2M|) <2> . (32)
C3 w w C3



Perturbation of an eigenvalue from a dense point spectrum 7179

In order to treat this type of compensation systematically let us §pii) into
equivalence classes. Two paths are equivalent if and only if one is obtained from the
other by replacing several short loops by their opposites. Thus a path contaisimgyt
loops belongs to a class with 2lements. Schematically one can write

I = > [T < Tl
all paths all segments equivalence classespairs of short loops  other segments
For a path € P(M) denote byN = N (¢) the number of vertices belonging£. Obviously,
N(v) is constant on every equivalence class. Relying on the estimates (29) and (32) one
concludes readily that there exists a constant 0 such that

S Mo < ()7 (5)

equivalence classj=

Sinceb > 3 we haver(1),1(2), 1(3) ¢ S’ and consequently, as(n) > 2 for alln € &,

2N() < M — 2.
To complete the proof it is sufficient to estimate the number of equivalence classes from
the above simply byP(M)| < 4™ (cf equation (28)). |

With the estimate given in lemma 10, it is quite straightforward to derive the following
existence (but not uniqueness) result.

Lemma 11. Under the same assumptions as in lemma 10, the series (27) converges to a
solutiong (B, 1) of the equation (6) provided@s, 1) belongs to the domain
reAN[-0/30/3] Bl < (2rl/w)?/2C. (33)
For eachh. e AN[—w/3, w/3], A # 0, the vector-valued functiog(g, A) is analytic inj
on the corresponding neighbourhood of 0 and
lg(B. 1) + BT, QV fII < 2C?p2. (34)

Now we can give a precise meaning to the right-hand side of the fixed-point equation
(8). For (B8, ») from the domain (33)

G(B, 1) :==B(OVSf, g(B,1) = ZﬂZk Gar (1)
=1 (35)
G (1) = —(QVf. (T, V)? 7T, QVf).
In our particular example we haw@,,.1(A) = 0 for kK > 1 but generally this need not be
the case. As a consequence of lemma 10 we obtain

G < IV <22') ((210“)9/2 6)2“. (36)

For our model in particularf (1) = 1)
4(E(1) —))
Gah) = —(QVA TWQVA) = 5= o35

and G,(0) £ 0.
We shall impose a stricter bound an |A| < A,, where O< A, < w/3, and we require
A, to be sufficiently small so that

e |G2(0) — G2(0)] < 1G2(0)]/2,
o (2n/w)? <1G2(0)|/(BwC?),




7180 P Duclos et al
w2 < 1G2(0)F2/ (18| V [ C?),
o (2n/0)!? < |G20)]/2|V]O).
Recall that] < p < 1 (cf equation (16)). Set
B(3) := 2(|Al/1G2000) 2.

The first requirement impliegG2(A)| > |G2(0)|/2 and sgnG,(A) = sgn G,(0). Owing to
the second requirement we have

A < A = B(Y) < (2IA]/w)?'?/2C

and so the conditions € AN[ —A,, A, ], |8] < B()») determine a subdomain of (33). From
the third requirement it follows that

A € A = 2V C2BO)® < 2. (37)

Finally, a routine calculation based on the definition (35)%fthe estimate (36), and the
fourth requirement yields the inequality

105G (B, A) —2BG2(1)| < |B11G2(0)] < 2|B]G2(2)] (38)
valid for 0 < [A] < A., 0 < |B] < (2IA]/w)?/2/2C. Consequently
sgnagG (B, 1) = sgnBGa(1) = sgnBG2(0). (39)

Lemma 12. Under the same assumptions as in lemma 10, for @aehA N[ —X,, A, ],
sgni = sgnG»(0), there exist exactly two solution$. (1) to the equatiorh. = G(8, 1)
in the interval [-B(1), B(1)], and there is no solution for sgn= — sgnG,(0). The two
solutions are non-zero, differ in sign, and we choose the convention

—B() < B-(1) <0< BL(M) < B().
Thenx is an eigenvalue of the operataks+ 8.(1) V.

Remark. Since, in the case of our modef;(8, A) is even in8 we have consequently
B_(1) = —B.(1). But, of course, this is not a general feature.

Proof. Obviously,G(0, 1) = 0. Let us show thatG(+B()), 1)| > |A|. From equation (34)
we obtain

IG(B, 1) — B2G2(M)| = 1B (QVS, g(B. 1) + BTLQVf) < 2|V C?B°
and, owing to (37),

|G(£B(V), 1) — B(L)? Goa(W)| < A
On the other hand,

Al 1
Z1G2(0)| = 2JA].
|G2(0)|2| 2(0)] 4]

In this way we have also verified that

sgnG(£B(A), L) =sgnGa(X) = sgnG»(0).

B2 Ga(1)| = 4

Now existence follows from the fact that the functioi{g, 1) is continuous (even analytic)
in B. The uniqueness is a consequence of the monotonic behaviour (cf equation (39)).



Perturbation of an eigenvalue from a dense point spectrum 7181
5. Properties of the function A(3)

We intend to invert the functiong, (A) and 8_(A) in order to obtain the desired function
A(B) defined respectively on sefs and/_, with I. C R., and we naturally sex(0) = 0.
Thus the total domain fok(8) is I = I_ U {0} U I,.. A(B) is positive (negative), except
of A(0) = 0, if G»(0) is positive (negative). The existence of the inverted function follows
from the monotonic behaviour of the original functiofs(i).

We shall need the following lemma.

Lemma 13.The functionG (8, 1) defined in (35) fulfills the equality

G(B,22) — G(B, A1) = —(ha — A1) (8(B, A2), g(B, A1)
for all
M, h2 € AN[—w/3,0/3], 1Bl < 2min{|Adl, [A2l}/w)?/?/2C. (40)

Proof. Note thatl",, — 'y, = (A2 — 1) I',,I, onD(T,,) ND(T;,) and consequently, using
(31),

(QVf, (T, V)T, QVf — (T3, V)T, QVF)

k
= (2 — A1) Y ([, V) T,QVf (0, V)/T5, 0V ).
j=0
Now the identity can be verified easily with the aid of (27). O

From equation (34) one deduces thatg, 12), g(B, 1)) > 0 wheneveriy], |A;| are
sufficiently small and S| obeys (40). Thus we find tha&k (B, 1) is strictly decreasing in.
for every 8 fixed. The same is true for the functiah(g, ) := G(8, 1) — A.

This is an elementary exercise to verify that the functigngi) are strictly monotonic
provided one uses the equali®(B.(A), A) = 0 and the fact that (8, 1) is monotonic in
B (c.f. (39)) and strictly monotonic in. We can formulate our conclusion as follows.

Lemma 14.There exists a bouna,,, 0 < A,, < A,, and a functiom.(8) defined on/ C R
such that O 7 andA(0) = 0, BL(A(B)) = B for VB € I N R., and the range of both
AB)II NR. andA(B)|I NR_ equals eitheA N[0, A,,] or A N[ —A,., 0] depending on
whetherG,(0) is positive or negative. Fo¥ g € I, A(B) is an eigenvalue of the operator
K +pBV.

That one has to abandon some values of the coupling congtamid determine the
perturbed eigenvalue as a functid(B) defined on a domaih possessing ‘holes’ seems to
be a typical feature of the perturbation theory of dense point spectra. To treat functions of
this type one can refer to the celebrated Whitney Extension Theorem (see Stein 1970). In
fact, its proof in the one-dimensional case is rather elementary. We shall need the following
very particular version.

Lemma 15.Let x be a real function defined on a closed subiset R, x being monotonic,
and suppose that there exist two constants @ < B such that

Alyr —y2| < Ix(1) — x (2| < Blyr — 2l forall y;,y, €7.

Then there exists an extensigndefined onR, x|Y = x, and § is again monotonic and
obeys the same inequalities but this time on the wholelline

Alyr — y2| < X (1) — X (2| < Blyr — 2l for all y1, y» € R.
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Proof. The complement ot is an open subset & and hence at most countable disjoint
union of open intervals. One defines the functjptinearly on these intervals requiring it
to be continuous. Provided the interval in question is half-infinite thea defined again
linearly with the slope lying betweeA and B. The inequalities fory defined this way are
easy to verify; for the left one we require thatbe monotonic. O

We wish to show that 0 is a point of density for the $etWe already know that this
is true for the seA (lemma 6). The intermediate step is given by

Lemma 16. Assume that a real functiop(x), defined on a seX c [0, +o¢], is strictly
increasingy(0) = 0 (= 0 € X), and the set = ¢(X) is closed. Moreover, suppose that
there exist two constants© A < B such that

Alxf = x7| <o) — 9(x2)| < Blxf — x5 for all x1,x, € X. (41)
Then it holds that
im|YN[O,n]l/n=1= lim|XNJ[0,58]|/86 = 1. (42)
nl0 510

Proof. Apply lemma 14 to the function (y) = (¢~1(y))? (the corresponding constants are
0 < 1/B < 1/A). The extensiory is again strictly increasingy(y) > 0 for y > 0, and

¥ (R,) =R,. Defineg onR, by ¢(x) = y iff x2 = %(y), i.e. is the inverse of i |R)Y/2.
Clearly, the functionp is an extension op, ¢|X = ¢, it is again strictly increasing, and the
inequalities (41) hold fop on the whole positive half-line. Consequentfyjs absolutely
continuous on every bounded interval, exists almost everywhere, and it holds that

@(x) < Bx? and Ax < ¢ (x) for (almost) all x > 0.

Denote by X°® and Y° the complements ofX and Y in [0, +oco[, respectively. The
implication (42) is equivalent to

lim YN [0,7]l/n =0 = lim|X°N[0,58]|/8 = 0. (43)
nl0 510

Choosep, 1 < p < 2, and letg be the adjoint exponenp~ 4+ ¢~ = 1. We shall verify
the inequality

_ B p\Ypr ,_ - 1/
1,ycC < = _r 1,yc q )
stixenfosl<,, (1-70) T (6® 7Y n[0.4®)]) (44)
It is clear that (43) is a consequence of (44). We have
dy VB -
|Xcm[075]|:/ ng yl/zdy
ven[0.6®)] P (@71H0)) T 24 Jyeno.66)]

since@ (¢~ 1(y)) = 2A ¢~ (y) > 2A (y/B)Y2. The Hilder inequality then gives

3(6) p 1/q
/ y Y2dy < / y P2 dy (/ dy)
Yon[0.6(5)] 0 Yen[0.58)]

-1/p e - 1
<(1-%) " VBs (6@ e n(0.6®)1)"
and (44) follows immediately. O
Observe that the property (2) given in proposition 1 is equivalent to
|;5T(}|Iﬁ[0,8]|/5=1 and ;irgum[—a,on/a:l.
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Thus we can treat the right and the left neighbourhood of 0 separately. We can now apply
lemma 16 to the functioi(8) instead ofp(x), and to the seté, U {0} and/_U {0} instead

of X. Observe from the definition (14) that is closed. Let us show that the condition
(41) is fulfilled as well. Assume thdty, B2 € I, |B1] < |B2]- Then(B1, A(B1)), (B2, A(B2))

and (81, A(B2)) belong to the domain of;. Write

A(B1) — A(B2) = G(B1, A(B1) — G(B1, A(B2) + G(B1, A(B2)) — G(B2, A(B2))

and use lemma 13 to obtain
A(BL) — A(B2) =

Deduce from (34) that

0 < (g(B1. A(BL). &(B1. L(B2))) = O(IB21?) as |1l < [B2l > O
and note that (38) can be rewritten as

052G (B, 1) — G2(1)| < |G2(0)[/2.
One readily concludes that there exist constants 8 < B and a boungs, > 0 such that
AlBL = BEI < [M(By) — M(B2)| < BIBE — B3| forall pu, po € IN[—B.. B.].
Lemma 17.0 is a point of density for the sdt

G (B1, M(B2)) — G (B2, A(B2)
1+ (g(B1, M(BD), g(B1, 2(B2)))

Now we can approach the problem of the asymptotic series. Consider first the following
situation. Let{H;}°, be a sequence of complex meromorphic functions such that 0 is a
regular point for all of them and, moreoveip(0) = 0, Hy(0) # 0. Then

®(x,y) =Y x* Hi(y) € Cl[x, y]]

k=0
is well defined as a formal power seriesxirandy. Denote byy”/ (x) € C[[x]] the solution
to the problem

/(=0 and  P(x,¢/(x) =0
which exists and is unique in the class of formal power series. Set

Re :=C\ U{the poles of the functior,}
k=0
and letR(y) be the radius of convergence of the seriée, y) in the variablex, with
y € R¢ being fixed.

Lemma 18.Let ¢ be a complex function defined ax ¢ C and assume that:

(i) 0 € X is an accumulation point oX,
(i) Vx € X, |x] < R(p(x)) (and so the valu@ (x, ¢(x)) is well defined),
(i) ¢ solves the problem

00 =0 and d(x,p(x))=0 VxeX
(iv) there existsu > 0 such that
Py (x, p(x)) = O(x|*V) VN eZ,

N
Dy (x,y) =Y x* Hi(y).
k=0

Theng/ (x) is an asymptotic series f@r(x).
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Proof. Denote by<p£, the truncation of ordeM of ¢/ (thusw,{, is a polynomial of degree
at mostM ande (x) — ¢l (x) € xM*1C[[x]]). We have to show that
P(x) — ¢l (x) =O(x|"*Y) VM eZ,.
Denote byp™ (x) the unique solution to the problem
eMO =0 and  Oy(x,¢M(x) =0
in the class of germs of holomorphic functionsxat 0. Clearly,
on =y’ it N>M.

Note that the requirement (4), with = 0, means thatHy(¢(x)) = O(|x|*). Since
H{(0) # 0 we find that lim_o ¢(x) = 0. Obviously, it also holds that lim.o o™ (x) = 0.

Observe thad, ®y (0, 0) = H)(0) # 0. Consequently, for any € Z, there exist positive
constantsy, 8y such that

|y (x, 9(x) — Dy (x, ™M ()] = ey lp(x) — o™ (x)] VxeX |x| <éy.
Fix M € Z, and chooseV € Z, such thatv > M andu(N +1) > M + 1. Write
P() — () = p(x) — e () + 9™ (x) — 0} (%) = (x) — e (x) + O(x Y.
On the other hand
en lo(x) — o™ ()] < [Py (x, 9(x) — Py (x, 9N (X)) = [Py (x, 9(x))|
— O(|x|”(N+l)).
We conclude thap(x) — go;@(x) = O(|x|M+1), as required. O

Lemma 17 is directly applicable to the functiah(s, 1) := G(8,A) — A and to our
solution A(B).

Lemma 19.The formal power serie§_};_,&n B, with &y given in (10) and (13), is an
asymptotic series for the function(g) defined on/.

In summary let us state that lemmas 14, 17 and 19 jointly verify the existence and the
properties of the function(8) and thus the proof of proposition 1 has been completed.
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